Duodenal mucosal reductase in wild-type and Hfe knockout mice on iron adequate, iron deficient, and iron rich feeding.

نویسندگان

  • R J Simpson
  • E Debnam
  • N Beaumont
  • S Bahram
  • K Schümann
  • S K S Srai
چکیده

BACKGROUND Genetic haemochromatosis is a common hereditary iron loading disorder in humans. The disease is associated with loss of function mutations in the HFE gene. This is thought to change iron stores via increased iron absorption. AIMS In this study we investigated how adaptation of mucosal reductase activity is engaged in this process and how the changes compare with adaptation seen when an iron deficient diet is fed. METHODS Duodenal mucosal surface reductase was measured with nitroblue tetrazolium in age matched groups of male Hfe knockout mice (Hfe) and wild- type mice fed a purified diet containing normal (iron adequate), high (iron rich), or low (iron deficient) iron concentrations. RESULTS Reductase activity increased when mice were fed an iron deficient diet and decreased when they were fed an iron rich diet. Total villus activity, as measured by the average area under the activity curve along the crypt-villus axis, was increased 2.8-2.9-fold by iron deficiency in both genotypes. Approximately half of this difference was attributable to the significantly increased length of the villi in mice on an iron deficient diet (p<0.05). Hfe knockout did not affect villus length but increased mucosal reductase activity near the villus tips. Similar increases (1.3-1.6-fold) were seen on all diets but the increase was significant for iron deficient and iron loaded diets only (p<0.05). CONCLUSION Hfe gene product and dietary iron downregulate villus reductase activity in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of the hemochromatosis gene differentially regulates duodenal expression of iron-related mRNAs between mouse strains.

BACKGROUND & AIMS Hfe knockout mice, like patients with hereditary hemochromatosis, have augmented duodenal iron absorption and increased iron deposition in hepatic parenchymal cells. The goals of the present study were to gain further insight into the control of iron absorption by comparing the transcript levels of iron-related genes in the duodenum of DBA/2 Hfe-/- mice, susceptible to iron lo...

متن کامل

Physiologic systemic iron metabolism in mice deficient for duodenal Hfe.

Mutations in the Hfe gene result in hereditary hemochromatosis (HH), a disorder characterized by increased duodenal iron absorption and tissue iron overload. Identification of a direct interaction between Hfe and transferrin receptor 1 in duodenal cells led to the hypothesis that the lack of functional Hfe in the duodenum affects TfR1-mediated serosal uptake of iron and misprogramming of the ir...

متن کامل

RED CELLS Regulation of iron absorption in Hfe mutant mice

Hereditary hemochromatosis is most commonly caused by homozygosity for a point mutation (C282Y) in the human hemochromatosis gene (HFE). The mechanism by which HFE regulates iron absorption is not known, but the C282Y mutation results in loss of cell surface expression of the human hemachromatosis protein (HFE) and hyperabsorption of iron by the duodenal enterocyte. Mice homozygous for a deleti...

متن کامل

Regulation of iron absorption in Hfe mutant mice.

Hereditary hemochromatosis is most commonly caused by homozygosity for a point mutation (C282Y) in the human hemochromatosis gene (HFE). The mechanism by which HFE regulates iron absorption is not known, but the C282Y mutation results in loss of cell surface expression of the human hemachromatosis protein (HFE) and hyperabsorption of iron by the duodenal enterocyte. Mice homozygous for a deleti...

متن کامل

Iron uptake from plasma transferrin by the duodenum is impaired in the Hfe knockout mouse.

Hereditary hemochromatosis (HH) is a disorder of iron metabolism in which enhanced iron absorption of dietary iron causes increased iron accumulation in the liver, heart, and pancreas. Most individuals with HH are homozygous for a C282Y mutation in the HFE gene. The function of HFE protein is unknown, but it is hypothesized that it acts in association with beta(2)-microglobulin and transferrin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gut

دوره 52 4  شماره 

صفحات  -

تاریخ انتشار 2003